8.1.2 Serial EEPROM

Occasionally, our needs will exceed the capacity of PIC’s internal EEPROM. When we need to store a larger amount of data obtained by PIC, we have an option of using external serial EEPROM. Serial means that EEPROM uses one of the serial protocols (I2C, SPI, microwire) for communication with microcontroller. In our example, we will work with EEPROM from 24Cxx family which uses two lines and I2C protocol for communication with MCU.

Serial EEPROM connects to microcontroller via SCL and SDA lines. SCL line is a clock for synchronizing the transfer via SDA line, with frequency going up to 1MHz.

[image: image1.png]MSE LsB
EEPROM address

I2C communication allows connecting multiple devices on a single line. Therefore, bits A1 and A0 have an option of assigning addresses to certain I2C devices by connecting the pins A1 and A0 to the ground and +5V (one I2C line could be EEPROM on address $A2 and, say, real time clock PCF8583 on address $A0). R/W bit of address byte selects the operation of reading or writing data to memory. More detailed data on I2C communication can be found in the technical documentation of any I2C device.

Our following program sends data to EEPROM at address 2. To verify transfer, we’ll read data via I2C from EEPROM and send its value to PORTD. For more information on I2C Library consult Chapter 5: Built-in and Library Routines.

program EEPROM_test

dim EE_adr as byte
dim EE_data as byte
dim jj as word
main:

 I2C_init(100000) ' Initialize full master mode
 TRISD = 0 ' PORTD is output
 PORTD = $ff ' Initialize PORTD
 I2C_Start ' Issue I2C start signal
 I2C_Wr($a2) ' Send byte via I2C(command to 24cO2)
 EE_adr = 2

 I2C_Wr(EE_adr) ' Send byte(address of EEPROM)
 EE_data = $aa

 I2C_Wr(EE_data) ' Send data(data that will be written)
 I2C_Stop ' Issue I2C stop signal
 for jj = 0 to 65500 ' Pause while EEPROM writes data
 nop

 next jj

 I2C_Start ' Issue I2C start signal
 I2C_Wr($a2) ' Send byte via I2C
 EE_adr = 2

 I2C_Wr(EE_adr) ' Send byte(address for EEPROM)
 I2C_Repeated_Start ' Issue I2C repeated start signal
 I2C_Wr($a3) ' Send byte(request data from EEPROM)
 EE_data = I2C_Rd(1) ' Read the data
 I2C_Stop ' Issue I2C_Stop signal
 PORTD = EE_data ' Print data on PORTD
noend: ' Endless loop
 goto noend

end.

